60 research outputs found

    Efficient Solving of Quantified Inequality Constraints over the Real Numbers

    Full text link
    Let a quantified inequality constraint over the reals be a formula in the first-order predicate language over the structure of the real numbers, where the allowed predicate symbols are ≀\leq and <<. Solving such constraints is an undecidable problem when allowing function symbols such sin⁥\sin or cos⁥\cos. In the paper we give an algorithm that terminates with a solution for all, except for very special, pathological inputs. We ensure the practical efficiency of this algorithm by employing constraint programming techniques

    Deciding Predicate Logical Theories of Real-Valued Functions

    Full text link
    The notion of a real-valued function is central to mathematics, computer science, and many other scientific fields. Despite this importance, there are hardly any positive results on decision procedures for predicate logical theories that reason about real-valued functions. This paper defines a first-order predicate language for reasoning about multi-dimensional smooth real-valued functions and their derivatives, and demonstrates that - despite the obvious undecidability barriers - certain positive decidability results for such a language are indeed possible

    Deciding Predicate Logical Theories Of Real-Valued Functions

    Get PDF
    The notion of a real-valued function is central to mathematics, computer science, and many other scientific fields. Despite this importance, there are hardly any positive results on decision procedures for predicate logical theories that reason about real-valued functions. This paper defines a first-order predicate language for reasoning about multi-dimensional smooth real-valued functions and their derivatives, and demonstrates that - despite the obvious undecidability barriers - certain positive decidability results for such a language are indeed possible

    Solving composed quantified constraints from discrete-time robust control

    No full text
    International audienceThis paper deals with a problem from discrete-time robust control which requires the solution of constraints over the reals that contain both universal and existential quantifiers. For solving this problem we formulate it as a program in a (fictitious) constraint logic programming language with explicit quantifier notation. This allows us to clarify the special structure of the problem, and to extend an algorithm for computing approximate solution sets of first-order constraints over the real to exploit this structure. As a result we can deal with inputs that are clearly out of reach for current symbolic solvers
    • 

    corecore